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Asian cultivated rice (Oryza sativa) is thought to have been domesti-
cated from divergent populations of Asian wild rice, O. rufipogon and 
O. nivara, >10,000 years ago1,2. During domestication, rice has under-
gone significant phenotypic changes in grain size, color, shattering, 
seed dormancy and tillering. For decades, geneticists have used quanti-
tative trait locus mapping to localize the major causative genes respon-
sible for these traits, yielding a dozen trait-related genes in cultivated 
rice (for example, sh4, rc and prog1)3–6. Additionally, a recent genome-
wide association study using genome-wide SNP data for 517 Chinese 
landraces identified loci that may be associated with 14 agronomic 
traits7. However, quantitative trait locus and gene mapping is labor 
intensive and time consuming, taking years to construct segregating 
populations and requiring intensive phenotyping and genotyping. 
Association mapping is also prone to missing excellent alleles because 
the favorable alleles tend to be rare and are difficult to detect during 
regular association analyses8. A more recent report tried to identify 
artificially selected genes9, but the strategy of pooling many accessions 
(a strain identified by an International Rice Research Institute (IRRI) 
accession number) together and using shallow sequencing coverage 
provided limited variation data for rice. If a comprehensive catalog 
of genome variation in both cultivated and wild rice were available, 
it would greatly facilitate the identification of functional variations 

in elite varieties by comparing genomic variation in an elite variety 
with data from controls. Dense variation data will also be useful for 
marker-assisted breeding and gene mapping of rice.

RESULTS
Sequencing and mapping
Cultivated rice is classified into two major subspecies of O. sativa 
(indica and japonica) and is further subdivided into genetically dif-
ferentiated groups, including Glaszmann’s six groups (I to VI)10 
and Garris et al.’s five groups (indica, aus, aromatic, temperate 
japonica and tropical japonica)11. We selected 40 cultivated rice 
accessions to represent all of the major groups of Asian cultivated 
rice (Supplementary Table 1), including 11 tropical japonica (TRJ), 
8 temperate japonica (TEJ) and 6 aromatic (ARO) that belong to 
japonica rice, and 4 aus (AUS) and 9 indica (IND) that belong to 
indica rice (Supplementary Table 1). In addition, we sampled one 
accession each from groups III and IV, proposed by Glaszmann10, 
which were not included in a previous population study11. Among 
these cultivars, 29 are considered to be landraces and 11 are improved 
varieties. To strictly control the quality of our sequencing and SNP 
calling, we also included the Nipponbare strain, which was used to 
generate the reference rice genome sequence12. For wild rice samples, 

Resequencing 50 accessions of cultivated and wild 
rice yields markers for identifying agronomically 
important genes
Xun Xu1–3,12, Xin Liu2,12, Song Ge4,12, Jeffrey D Jensen5,12, Fengyi Hu6,12, Xin Li1,12, Yang Dong1,12,  
Ryan N Gutenkunst7, Lin Fang2, Lei Huang3,4, Jingxiang Li2, Weiming He2,8, Guojie Zhang1,2,4,  
Xiaoming Zheng3,4, Fumin Zhang3, Yingrui Li2, Chang Yu2, Karsten Kristiansen2,9, Xiuqing Zhang2, Jian Wang2, 
Mark Wright10, Susan McCouch10, Rasmus Nielsen1,9,11, Jun Wang2,9 & Wen Wang1

Rice is a staple crop that has undergone substantial phenotypic and physiological changes during domestication. Here we 
resequenced the genomes of 40 cultivated accessions selected from the major groups of rice and 10 accessions of their wild 
progenitors (Oryza rufipogon and Oryza nivara) to >15 × raw data coverage. We investigated genome-wide variation patterns in 
rice and obtained 6.5 million high-quality single nucleotide polymorphisms (SNPs) after excluding sites with missing data in 
any accession. Using these population SNP data, we identified thousands of genes with significantly lower diversity in cultivated 
but not wild rice, which represent candidate regions selected during domestication. Some of these variants are associated with 
important biological features, whereas others have yet to be functionally characterized. The molecular markers we have identified 
should be valuable for breeding and for identifying agronomically important genes in rice.

1CAS-Max Planck Junior Research Group on Evolutionary Genomics, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese 
Academy of Sciences (CAS), Kunming, China. 2BGI-Shenzhen, Shenzhen, China. 3Graduate University of Chinese Academy Sciences, Beijing, China. 4State Key 
Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China. 5School of Life Sciences, École Polytechnique 
Fédérale de Lausanne (EPFL), Lausanne, Switzerland. 6Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China. 7Department 
of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA. 8South China University of Technology, Guangdong, China. 9Department of Biology, 
University of Copenhagen, Copenhagen, Denmark. 10Department of Plant Breeding & Genetics, Cornell University, Ithaca, New York, USA. 11Departments of 
Integrative Biology and Statistics, University of California, Berkeley, USA. 12These authors contributed equally to this work. Correspondence should be addressed to 
W.W. (wwang@mail.kiz.ac.cn) or J.W. (wangj@genomics.org.cn) or R.N. (rasmus_nielsen@berkeley.edu).

Received 3 June; accepted 25 October; published online 11 December 2011; doi:10.1038/nbt.2050

http://www.nature.com/doifinder/10.1038/nbt.2050
http://www.nature.com/naturebiotechnology/


©
20

11
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�	 advance online publication  nature biotechnology

r e s o u r c e

five accessions each from O. rufipogon and O. nivara were collected 
according to the geographic distribution of wild rice (Supplementary 
Table 1 and Supplementary Fig. 1).

We sequenced these accessions to >15 × coverage (raw data) using 
Illumina GA2 instruments. The sequencing quality of these raw reads 
was generally high (90% with Phred quality score > 27) (Supplementary 
Figs. 2 and 3). We first mapped the short reads back to the IRGSP v4 
rice genome13 by SOAP2 (version 2.20)14. The mapping rate in different  
accessions varied from 79% to 94%, and the final effective mapping 
depth was >10 × for most accessions (Table 1 and Supplementary 
Table 1). Japonica accessions had the highest mapping rate, whereas 
the two species of wild rice had relatively low mapping rates. The 
differences in mapping rates may be due to divergence between the 
sequenced accessions and the reference. Contamination during sample  
preparation or sequencing may also cause low mapping rates. 
However, we found that <10% of unmapped reads can be mapped to 
sequences from other species (mostly from Xanthomonas campestris 
and Escherichia albertii) that might be contamination. Thus, most 
unmapped reads were either from individual-specific or diverged 
sequences or from reads with serious sequencing errors.

We assembled unmapped reads for each accession into contigs 
(Supplementary Notes, Supplementary Table 2 and Supplementary 
Data Set 1), and then used de novo gene prediction to annotate a 
total of 2,031 genes in the contigs, of which 1,552 had homologs 
in the NCBI nonredundant (nr) database and 1,415 of these had 
homologs in plants (Supplementary Table 3). The average length 
of these 1,415 genes was substantially shorter than that of the whole 
genome (957 bp versus 2,300 bp), indicating that many of them are 
not intact genes and some may be pseudogenes. We chose 17 such 
‘novel’ genes from the wild rice Yuan 3-9 accession for PCR valida-
tion (Supplementary Notes). Twelve of them could be amplified in 
Yuan 3-9 but not in Nipponbare, and five could be amplified in both 
Yuan 3-9 and Nipponbare (Supplementary Fig. 4), indicating some 
of these unmapped genes may be found only in a certain accession but 
some could represent diverged homologous genes. We were able to 
detect transcripts for ten of the twelve Yuan 3-9–specific genes using 
RT-PCR of pooled RNAs extracted from root, shoot and leaf of Yuan 
3-9, suggesting that some of these novel genes may be bona fide genes 
or expressing pseudogenes. We further annotated protein domains 
in the 1,415 genes by InterProScan15. Sixty percent of them could 
be functionally annotated (Supplementary Table 3). Of the 1,415 
novel genes that have homologs in plants, 685 were found only in one 
accession, 1,282 were found in <5 accessions and 319 were found only 
in wild rice. The most common novel gene, which had an unknown 
function, was found in 34 accessions.

In addition to novel genes, we also tried to identify genes absent 
in some accessions. By mapping reads to the reference genome, we 
found that the genome coverage varied from 84% to 95%. Of the 
regions that were not covered in at least one accession, 51% were 
repeat regions (Supplementary Fig. 5), and those unmapped regions 
had substantially higher GC ratios than the whole genome average 
(75.1% versus 43.5%). In different accessions, there were some genes 
with unexpected low coverage, whereas in the Nipponbare individual 
that we sequenced, we did not observe any gene with coverage <10% 
of the gene length. Thus, we used this criterion to identify 1,327 pos-
sible gene loss events, defined as genes with <10% coverage in one or 
more accessions but >90% coverage in the Nipponbare.

To collect more evidence supporting these gene loss events, we  
used the paired-end information of reads. Structure variations, including 
deletions, would result in discordant paired-end reads mapping in the 
corresponding region and thus can be identified by comparing the insert 
length of paired-end mapped reads to the experimental insert size16–18. 
We observed that 839 of those 1,327 possible lost genes had such discord-
ant paired-end reads across the low-coverage region (Supplementary 
Fig. 6 and Supplementary Table 4) and thus were retained in the final 
gene loss data set. Validation of gene loss events by PCR suggests a low 
false-positive rate in the final data set. Of nine randomly chosen gene 
loss events, eight could be validated (Supplementary Notes). These 
lost genes may be responsible for heterosis and thus may be important 
in breeding programs19–21. Forty-nine percent of these genes had no 
functional or annotation information, and 16% were nonprotein coding 
genes (Supplementary Fig. 7). Overall the lost genes were significantly 
enriched in the distal regions of chromosomes (Wilcoxon rank sum test, 
P = 0.01, Supplementary Fig. 8).

Variation across the rice genome
Using a strict pipeline (Supplementary Notes), we identified  
~15 million candidate SNPs in all 50 accessions (Supplementary Data 
Sets 2 and 3). To obtain SNPs for population analyses, we excluded 
SNPs with missing data in any of the 50 accessions, as these will make 
subsequent inferences unreliable, yielding a final total of 6,496,456 
high-quality SNPs (Table 1). To our knowledge, this represents the 
largest high-quality SNP data set obtained in rice. The data may be 
used to identify important rice genes by serving as molecular markers 
for designing rice SNP arrays and for breeding. Indeed, by using this 
data set as a control to represent background genetic variation in rice, 
we were recently able to identify many tag functional SNPs in elite rice 
varieties, and our extensive study of one of them has revealed that it 
functions in the adaptability of upland rice by regulating abscisic acid 
synthesis (J. Lv, F. Hu, W. Wang et al., unpublished data).

Table 1  Summary of sequencing and variations for cultivated and wild rice

Group Sample size Raw data (Gbp) Raw data depth
Uniquely mapping 

bases (Gbp) Mean depth
Mean depth in 

gene region SNP (M) Indel (K) SV (K)a

Total 50 319.2 18.7 182.4 11.8 14.3 6.5 808 94.7
Cultivar total 40b 249.8 18.7 163.0 12.2 14.5 4.4 612 62.1
  Indica 12 82.5 18.5 47.4 10.6 13.3 3.0 441 38.7
    AUS 2 13.4 18.0 7.9 10.6 13.0 0.8 183 17.4
    IND 10 69.1 18.6 39.5 10.5 13.4 2.9 414 24.3
  Japonica 24 167.3 18.7 115.6 12.9 15.1 2.5 355 28.5
    ARO 6 45.6 20.4 29.7 13.3 15.9 1.1 183 15.3
    TEJ 8 53.2 17.9 39.5 13.3 15.2 1.1 136 4.3
    TRJ 10 68.5 18.4 46.4 12.5 14.6 1.5 208 11.1
Wild total 10 69.4 18.7 39.4 10.6 13.3 5.2 682 40.4
  O. rufipogon 5 34.0 18.3 19.2 10.3 12.9 3.5 424 21.1
  O. nivara 5 35.4 19.1 20.2 10.9 13.7 3.1 439 21.7
aStructural variation (insertion or deletion longer than 100 bp) relative to Nipponbare; the structural variations in the same region in different accessions count as one. bOnly 36 cultivar acces-
sions can be clearly put in a subgroup, and the other four accessions have admixed genetic backgrounds, as indicated in Supplementary Table 1.
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Of the 6.5 million high-quality SNPs, most (82%) were located in 
intergenic regions, and only 3.6% were located in coding sequence 
regions (Supplementary Table 5). Among the latter, there were 
103,321 synonymous and 132,819 nonsynonymous SNPs. Thus, 
the ratio of nonsynonymous to synonymous substitutions was 1.29, 
which is consistent with previous work22. This ratio is higher than that 
of Arabidopsis (0.83)23 but lower than that of soybean (1.61)24. We 
tried to identify gene families with ratios that deviated significantly 
from the whole genome average (Supplementary Fig. 9). Gene 
families with essential functions (for example, the ubiquitin family  
and cellulose synthase family) tended to have substantially lower  
nonsynonymous-to-synonymous substitution ratios, whereas gene 
families that function in regulatory processes and signal recognition, 
such as the disease resistance family, had higher ratios.

In addition to SNPs, we also detected 808,000 small insertions 
and deletions (indels, 1–5 bp) by mapping reads with gaps allowed. 
We found nearly equal numbers of insertions and deletions. Similar 
to trends observed for SNPs, rare variants comprised a large 
proportion of total indels, with ~67% of indels found in <5 accessions 
(Supplementary Fig. 10). Most of the indels were located in intergenic 
regions, and ~1% (8,232) were located in coding sequences, among 

which 40% were in-frame, 3-bp indels (Supplementary Table 6 and 
Supplementary Fig. 11). The 5,161 out-of-frame indels might have 
generated pseudogenes in different accessions.

Next we applied an assembly-based method to identify larger struc-
tural variations. To improve assembly quality, we pooled individuals 
from the same subgroups, which yielded >80 × raw coverage of the ref-
erence rice genome. We identified 94,700 structural variations >100 bp 
in length (Table 1). Based on coverage depth, we also identified 1,676 
copy number variations (CNVs) having more copies than the refer-
ence genome (Supplementary Table 7). Twenty-one percent of the 
CNVs occurred in more than five individuals. Eight-hundred sixty-
five CNVs corresponded to gene regions (Supplementary Table 8), of 
which 338 (39%) were hypothetical or functional unknown genes, and 
66 (8%) were nonprotein coding transcripts. Among the genes with 
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Figure 1  Population structure of Asian rice. (a) PCA using all identified SNPs as markers. Most indica, japonica, O. nivara and O. rufipogon accessions 
cluster together, whereas four accessions (IRGC 12883, 8555, 43397 and 60542, marked as 1, 4, 28 and 39) that are located between groups can be 
explained by admixture and are marked as gray dots. The numbers by each dots are index numbers to the International Rice Research Institute (IRRI) 
accession numbers in Supplementary Table 1. (b) Neighbor-joining phylogenetic tree based on all SNPs, with the evolutionary distances measured by 
p-distance with PHYLIP51. (c) Population structure analysis using FRAPPE35. Each color represents one population. Each accession is represented by a 
vertical bar, and the length of each colored segment in each vertical bar represents the proportion contributed by ancestral populations.

Table 2  Diversity levels of different populations and subpopulations

Statistic

Cultivated rice Wild rice

Combined Indica Japonica Combined O. rufipogon O. nivara

π per kb 5.4 5.7 3.7 7.7 7.2 6.3
θw per kb 6.6 6.8 5.5 11.5 10.6 9.4
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functional annotation, many were disease resistance genes (14 are 
annotated as ‘disease resistance protein’, four are ‘leucine rich repeat 
containing protein’ and three are ‘NB-ARC domain containing’).

Population structure of cultivated and wild rice
Among the 6.5 million high-quality SNPs, 4,124,470 were found in 
cultivars. A large proportion (2,953,712; 71.6%) of these SNPs were 
also found in wild rice accessions, indicating that most genetic vari-
ation in cultivated rice is derived from the variation in wild rice. 
Of the remaining 1,170,758 (28.4%) cultivar-specific SNPs, some 
might have been false positives owing to the relatively small sample  
size of wild rice. Most of these cultivar-specific SNPs (720,289, 
61.5%) occurred at low frequency (≤4 in the total 72 chromosomes of  
36 cultivar accessions, after excluding four admixed accessions (see 
below)). In contrast, although we only sequenced ten wild accessions, 
we identified 5,241,380 high-quality SNPs in wild rice. This is consist-
ent with previous studies that showed that wild rice has a much more 
diverse gene pool than cultivars and thus may contain useful genetic 
resources for rice improvement25.

For cultivated and wild rice, we calculated π and θw values, two 
common summary statistics for measuring genetic diversity in a popu
lation26. The estimated diversity levels (Table 2) were roughly twice 
those found in a previous study27 of 111 randomly chosen sequence 
tag sites. However, when we restricted our analysis to regions corres
ponding to those 111 sites, we obtained diversity levels similar to 
those found previously27 (Supplementary Table 9). The π values in 
our indica and japonica samples were also higher than those observed 
in 517 Chinese indica and japonica landraces7, indicating that world-
wide cultivated rice contains more genetic diversity than Chinese lan-
draces. The japonica varieties had 49% less diversity than O. rufipogon, 
whereas indica had only 9% less diversity than O. nivara, although more 
japonica accessions were sampled in our study (Table 2). This suggests 
that japonica rice might have undergone a stronger reduction in effec-
tive population size than indica, possibly owing to a stronger bottleneck 
during domestication, which has been proposed previously7,28–30.

To examine genetic population structure and relationships among 
the major groups of Asian cultivated rice, we conducted principle 
component analysis (PCA)31,32 and constructed a neighbor-joining  
tree33,34, based on the 6.5 million high-quality SNPs. In the PCA, 
most of the samples could be divided using the first and second  
eigenvectors into indica, japonica, O. nivara and O. rufipogon 
groups, with O. rufipogon being more dispersed, indicating higher 

diversity (Fig. 1a). In our samples, indica was very closely related to  
O. nivara, whereas japonica was closer to O. rufipogon and farther from  
O. nivara. We used a neighbor-joining tree to cluster accessions based 
on average genetic distances (Fig. 1b). The neighbor-joining tree con-
tained three major groups, corresponding to O. rufipogon, japonica 
and O. nivara+indica, with a further subdivision of japonica into  
temperate, tropical and aromatic varieties (Fig. 1b). The small  
number of aus samples precluded any conclusion with respect to 
the subdivision of indica into indica and aus varieties. Furthermore, 
we used the program FRAPPE, which estimates individual ancestry 
and admixture proportions assuming K populations exist based on 
a maximum likelihood method35, to investigate population struc-
ture. We analyzed the data by increasing K (the number of popula-
tions) from 2 to 7 (Fig. 1c). For K = 2, we found a division between  
O. rufipogon/japonica and O. nivara/indica. When K = 4, we saw a 
new subgroup (aromatic) within the japonica group (Fig. 1c). When 
K = 5, tropical japonica and temperate japonica were separated. These 
results all support the hypothesis that the two cultivated rice sub
species might have been domesticated independently of different 
populations of wild rice28–30—for instance, the population that 
gave rise to indica may have evolved from an ancestral population 
closely related to our O. nivara samples, and the ancestral population 
that gave rise to japonica may have been more closely related to our  
O. rufipogon samples. We also used the indels we identified to con-
struct a phylogenetic tree. The grouping patterns among wild and 
cultivated rice largely remain the same (data not shown).

To further resolve the evolutionary history of rice, we sequenced 
ten more O. rufipogon and five more O. nivara samples at a lower ~3 ×  
coverage (Supplementary Notes) to achieve a better geographical reso-
lution of these two wild species (Supplementary Fig. 1). We called 
SNPs for each of these 15 accessions using SOAPsnp (version 1.01)36 
and only retained SNP sites that were covered by at least 6 out of the 15 
wild accessions to get informative sites for phylogenetic analyses. By 
intersecting these SNPs with the set of 6.5 million high-quality SNPs 
identified in the previous 50 accessions, we obtained 3,668,781 SNPs 
that could be used to analyze all 40 cultivated and 25 wild rice acces-
sions. PCA, neighbor-joining tree and FRAPPE analyses again showed 
that indica rice is closely related to O. nivara (Supplementary Fig. 12), 
indicating a complex evolutionary history between indica and O. nivara. 
More interestingly, the tree showed that all japonica rices were closer to 
the five Chinese O. rufipogon accessions, especially Dongxiang wild rice 
from the low Yangtze region, strongly supporting the conjecture that 
japonica might have been independently domesticated from a Chinese 
O. rufipogon population in the Yangzte region37.

It is noteworthy that a few of the accessions occurred at unexpected 
positions in both the PCA diagrams and the neighbor-joining trees (Fig. 1 
and Supplementary Fig. 12), including International Rice Genebank 
collection (IRGC) 12883 (no. 1) and IRGC 8555 (no. 4), which were 
reported to be aus (indica), and IRGC 43397 (no. 28), which was treated 
as tropical japonica (japonica) in previous studies11, as well as IRGC 
60542 (no. 39), which was considered to be in Group IV (japonica)10. 
These samples are most likely from accessions with admixed genetic 
backgrounds among (sub)species and were thus excluded in the follow-
ing analysis. In addition, previous studies reported that accessions IRGC 
26872, 2540 and 32399 were indica and that accessions 25901 and 27762 
were japonica11, but our whole genome sequence data clustered them 
into opposite subspecies (Fig. 1 and Supplementary Fig. 12). Our fur-
ther phenotyping results (data not shown) confirmed that these samples 
should belong to the cultivar groups that our genomic data suggested, and 
they were thus reclassified into appropriate cultivar groups in this study. 
Misidentification of accessions has been reported previously for rice29.

Figure 2  Linkage disequilibrium differences between wild and cultivated 
rice groups. (a) Linkage disequilibrium (LD) decays quickly within 10 
kb for indica, O. nivara and O. rufipogon, whereas it extends to 50 
kb in japonica. (b) Different japonica subgroups have similar linkage 
disequilibrium decay patterns, indicating that the overall long linkage 
disequilibrium in japonica is not caused by population substructure. 
Four accessions with mixed genomic backgrounds are removed from the 
cultivated population for all analyses in this figure.
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To estimate the linkage disequilibrium patterns in different  
rice groups, we calculated r2 (ref. 38) between pairs of SNPs 
using Haploview39. Linkage disequilibrium decayed to its half- 
maximum within <10 kb for O. rufipogon and O. nivara, 65 kb for 
indica and 200 kb for japonica (Fig. 2a). This linkage disequilib-
rium decay pattern again supports the hypothesis of a stronger 
bottleneck in japonica during domestication than that in indica. 

For subpopulations within japonica, linkage disequilibrium was 
also high (Fig. 2b), with the half-maximum at ~300 kb, 300 kb and  
180 kb for aromatic, temperate japonica and tropical japonica, 
respectively, which suggests that the high linkage disequilibrium in 
japonica cannot be attributed simply to population substructure. 
The fine linkage disequilibrium in each rice group will be useful 
for mapping rice genes.
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Regions (genes) affected by artificial selection
Phenotypic traits that were favorably selected by humans to enhance 
agricultural characteristics usually have low levels of variation and 
skewed allele frequency spectra40, parameters that have been successfully 
used to identify putative artificially selected genes in maize41–44, cattle45, 
silkworms46 and chickens47. Our large SNP data set from both wild and 
cultivated rice provides an opportunity to identify selected genes by 
comparing polymorphism levels in cultivated and wild species.

To detect selective sweeps driven by artificial selection, we sought 
to identify regions with significantly lower levels of polymorphisms in 
cultivated rice compared with wild rice. We calculated the reduction 
of diversity (ROD = 1 − πcul/πwild), based on the ratio of diversity in 
cultivated rice to the diversity in wild rice (πcul/πwild), in nonoverlap-
ping windows of 10 kb along the entire genome for japonica relative 
to O. rufipogon and for indica relative to O. nivara. These calcula-
tions are reasonable because japonica was clearly domesticated from  
O. rufipogon (Fig. 1b and Supplementary Fig. 12), and although 
the evolutionary relationship between indica and O. nivara might 
be complex (as discussed above), we had no other choice but to use  
O. nivara as the ancestor of indica. We identified regions in the 2.5% 
or 0.25% right tails of the empirical ROD distribution. These regions 
of lost diversity in cultivars might have experienced ultivar-specific 
selective sweeps. Quite often, a selective sweep results in a long link-
age disequilibrium fragment, and indeed, some candidate 10-kb win-
dows cluster together. An extreme case was observed in indica with 
2.5% ROD cutoff, in which the longest fragment extended to 240 kb. 
We considered all genes in these regions to be candidate artificially 
selected genes. When a gene crosses two windows, we counted it as 
one. It is likely that many of these genes were not themselves subjected 
to selection but rather have hitchhiked along with the actual gene 
targeted by artificial selection. To identify actual selected genes, more 
analyses, including transgenic experiments, are needed.

In japonica, we found 739 and 64 10-kb nonoverlapping win-
dows (containing 1,322 and 105 genes), based on 2.5% and 0.25% 
ROD cutoffs, respectively. In indica, we found 750 and 75 10-kb non
overlapping windows, containing 1,265 and 129 genes, respectively 
(Fig. 3, Supplementary Figs. 13, 14 and Supplementary Table 10). 
As the genomes of cultivars have been shown to contain long regions 
of linkage disequilibrium, we also used a 100-kb sliding window to 
identify candidate regions under selection. We found that all 100-kb 
windows with significant ROD values overlapped with one or more 
10-kb regions with significant ROD values, whereas only half of the 
regions identified using 10-kb windows could be identified using  
100-kb windows (Supplementary Notes and Supplementary Fig. 15). 
This indicates that the 10-kb window scanning was more informative 
for identifying smaller selected regions, especially for indica, which 
had a lower linkage disequilibrium level as described above.

We further calculated the divergence index FST
48 using the same 

nonoverlapping 10-kb window approach, and we found that more 
than half of the windows in the 2.5% ROD tails and >90% of the 
windows in the 0.25% ROD tails were also found in the extreme 2.5% 
right tails of the FST distribution (Supplementary Fig. 16). About 
98% of indica and 90% of japonica 2.5% ROD regions fell in the 5% 
right tail of FST distributions.

To identify candidate genes that underwent sweeps in both japonica 
and indica, we examined the overlapped regions from both the 
japonica and indica ROD distribution 2.5% right tails, yielding 73 
genes. These genes could be domestication genes that were swept in 
both japonica and indica. Or they could be indica-specific or japonica-
specific selective sweep genes that were possibly independently 
selected in either subspecies and may be related to morphological 

and physiological differences between japonica and indica. Two well-
known rice domestication genes, prog1 (refs. 5,6) and sh4 (ref. 3), were 
successfully identified in our putative artificial selection gene set. The 
region embedding prog1 showed a very strong selective sweep signal in 
both cultivar subspecies (RODindica_nivara = 0.97, RODjaponica_rufipogon=  
0.96, FST indica_nivara = 0.80, FST japonica_rufipogon = 0.91). The gene 
tree for prog1 was also indicative of a selective sweep, with star-like 
branches in the cultivars but long branches in wild rice (Fig. 3c). This 
gene is responsible for the evolution of erect growth in cultivated 
rice and is thus a key domestication gene5,6. The shattering gene sh4  
(ref. 3) was also selected by humans, although the selection signal  
was slightly weaker (RODindica_nivara = 0.93, RODjaponica_rufipogon= 0.89, 
FST indica_nivara = 0.77, FST japonica_rufipogon = 0.84) than prog1’s.

To assess possible gene functions targeted by artificial selection in rice 
domestication or improvement, we used gene family information (from 
the RAP-DB database of the IRGSP version 4.0, release 2) to annotate 
these candidate genes. Gene families related to morphology, growth 
and transcriptional regulation were enriched in the candidate genes 
(Supplementary Table 11), including seven belonging to the auxin-
responsive SAUR protein family (Fisher’s exact test, P < 0.01). This family 
plays important roles in flowering, plant growth and regulation of plant 
architecture in a tissue-specific or developmental stage-specific man-
ner49,50. This family was also reported to be enriched in maize domes-
tication genes by two previous studies42,44, suggesting important and 
general roles of these genes in crop domestication and improvement.

Some of these candidate artificial selection genes have not been 
functionally annotated yet. One such gene (Os09g0547100), located 
on chromosome 9, showed a very strong selective sweep signal 
(RODindica_nivara = 0.96, RODjaponica_rufipogon = 0.91, FST indica_nivara =  
0.86, FST japonica_rufipogon = 0.84) and a prog1-like gene tree in most 
cultivars (Fig. 3d), except for three indica accessions (IRGC 51300, 
9148 and 51250) that are clustered with wild rice. Another such gene 
(Os10g0124100) showed very strong evidence for a selective sweep 
only in japonica (RODjaponica_rufipogon= 0.96, FST japonica_rufipogon = 0.97; 
RODindica_nivara = 0.21, FST indica_nivara = 0.19). Strikingly, there were 
54 fixed SNPs in the coding region of this gene in japonica relative 
to O. rufipogon. There is no functional annotation information for 
this gene yet. All of these functionally uncharacterized or unknown 
candidate artificial selection genes provide useful guidance for rapidly 
identifying genes with agronomic significance in rice.

DISCUSSION
In this study, we provide a large genome variation data set for wild and 
cultivated rice. Millions of SNPs in representative wild and cultivated 
rice strains provided an unprecedented opportunity to finely resolve 
the domestication history of cultivated rice. Population structure and 
phylogenetic analyses not only support the hypothesis that japonica 
and indica were independently domesticated, but also further suggest 
japonica was domesticated from the Chinese strain of O. rufipogon. 
We identified thousands of candidate genes that may have been arti-
ficially selected during the domestication of one or both of the two 
cultivated subspecies. The SNPs will be useful as dense markers of 
genome variation for marker-assisted mapping of important rice traits 
as well as for rice breeding, and the candidate genes selected during 
domestication may be agronomically important. The data generated 
in this study provide a valuable resource for rice improvement.

URLs. Rice reference genome (IRGSP build 4) (IRGSP, 2005) and 
annotation files were downloaded from RAP-DB (http://rapdb.dna.
affrc.go.jp/). IRRI database, http://www.iris.irri.org/germplasm/. 
SOAP packages, http://soap.genomics.org.cn/.

http://rapdb.dna.affrc.go.jp
http://rapdb.dna.affrc.go.jp
http://www.iris.irri.org/germplasm/
http://soap.genomics.org.cn/
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Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturebiotechnology/.

Data access. The sequence data have been deposited into NCBI 
Short Read Archive under accession number SRA023116. Assembly 
sequence and novel genes are included in Supplementary Data 
Set 1 and can also be downloaded at ftp://rice:ricedownload@
public.genomics.org.cn/BGI/rice. The whole genome SNP data set 
(6.5M SNPs) has been deposited into NCBI dbSNP, with submis-
sion number records from ss256302601 to ss26799056. The total SNP 
data set (15M) can be found in Supplementary Data Sets 2 and 3 
and ftp://rice:ricedownload@public.genomics.org.cn/BGI/rice. The 
indel and structural variation data set can be found in Supplementary 
Data Set 4 and can also be found in ftp://rice:ricedownload@public.
genomics.org.cn/BGI/rice.

Note: Supplementary information is available on the Nature Biotechnology website.
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accessions or highly diverged subdomain of some genes. We described the 
homolog information for all the genes in Supplementary Table 3. In the 1,415 
genes, 60% of the genes can be functionally annotated, but only 24 (1.7% of the 
total “novel” genes) genes were annotated as transposons or retrotransposons, 
indicating most of them are genes or part of genes. These may have arisen 
from the transposition of Helitrons or Pack-MULEs, which commonly create 
incomplete pseudogenes in plants.

Identification of gene loss events. To identify gene loss events, we first 
extracted genes with <10% coverage in the gene region in some accessions 
but >90% coverage in the Nipponbare accession; 1,327 such genes were 
initially identified as candidates of lost genes. Then, we added paired-end 
reads to support the gene loss events. As we constructed short-insert-size  
libraries (200 bp or 500 bp) for sequencing, reads that mapped to the ref-
erence genome with obvious longer insert sizes indicated a possible dele-
tion in between. The candidate lost genes with at least one such uniquely 
mapped split read were finally identified as lost genes. By such a pro-
cedure, we identified 839 lost genes in various accessions. We further 
used PCR to validate the gene loss events. We randomly chose 9 deletions 
which were longer than 2 kb and used PCR to experimentally validate 
the deletions. Eight out of nine were clearly shown the deletions are real  
(Supplementary Fig. 18).

SNP calling. Incorrect mapping would have a great effect on the accuracy 
of variation detection, especially in SNP calling. To get high-quality SNPs, 
we excluded reads that could be mapped to different genomic positions in 
the mapping results by SOAP2. Uniquely mapped single-end and paired-end 
results were used in the SNP calling.

For the 50 accessions that were sequenced to a depth of ~15×, SNPs were 
called in three steps

1. �Likelihoods of genotypes of each individual at every genomic site were 
calculated by SOAPsnp36. In each individual, SNPs were filtered by  
the quality value given by SOAPsnp, which should be >20, and the base 
quality at this position should pass the rank-sum test (in SOAPsnp with 
P > 0.05). Then, the sites that were identified as SNPs in at least one 
individual were identified as possible SNPs. We obtained 15 M raw SNPs 
at this step.

2. �Call SNPs in a population by realSFS, a software that has been applied in a 
human population SNP calling57, based on the Bayesian estimation of site 
frequency at every site. It integrates the likelihoods of genotypes of each 
individual at each site generated in step 1. Sites with a probability to be vari-
ant >0.99, given by realSFS, are further extracted by the following criteria 
to get the possible SNPs: covered by at least one uniquely mapped read in 
each of the 50 accessions. Our results show that at a depth above tenfold 
coverage for a population, the property of real SNP sites (the probability of 
a variable >0.99) differs significantly from the nonvariable sites as well as 
the sites that are caused by sequencing and calling errors (Supplementary 
Fig. 19). In this SNP-calling procedure, there were 30,971,130 positions 
identified by realSFS to be variant (possibility >0.99), and 7,492,068 of them 
were covered in all 50 accessions by at least one uniquely mapped read. In 
this procedure, the allele frequency of each position was also estimated by 
realSFS (Supplementary Fig. 20). The population statistics based on SNPs 
were then estimated using the information on allele frequencies.

3. �We obtained the final SNP set by combining the two sets of possible SNPs 
above (from steps 1 and 2); 6,796,190 were identified as SNPs in both SNP 
sets. Then, using the genotype information at each SNP position given by 
SOAPsnp in Step 1, we further filtered the SNPs that deviated from the 
Hardy-Weinberg principle. Finally, we identified 6,496,456 SNPs. This 
extremely stringent SNP-calling process guarantees a low false-positive 
rate in our final SNP data set. We randomly validated 89 selected SNPs in 
all 50 accessions (Supplementary Notes and Supplementary Table 13).  
We also validated the heterozygous SNPs in Nipponbare which were 
significantly clustered in some regions (Supplementary Fig. 21) by 
randomly picking 62 heterozygous SNPs (Supplementary Table 14) by 
Sanger sequencing (Supplementary Fig. 22) (Supplementary Notes). 
These validations confirm the high quality of the SNP data set.

ONLINE METHODS
Sampling. All samples were grown in greenhouses for morphological confirmation.

Library construction and sequencing. Genomic DNA was extracted from 
fresh or silica gel-dried leaves of a single plant, using the CTAB method as 
described52. For each of the accessions, we only sequenced a single individual. 
At least 5 µg genomic DNA was used for each accession in constructing sequenc-
ing libraries. Paired-end sequencing libraries with insert sizes of ~200 bp  
or 500 bp were constructed for accessions according to the manufacturer’s 
instructions (Illumina). We used the same workflow as described previously 
to perform cluster generation, template hybridization, isothermal amplifica-
tion, linearization, blocking, denaturation and hybridization of the sequencing 
primers53. We sequenced 45 bp or 100 bp at each end and used SolexaPipeline-
0.3 to call bases for 45-bp reads and version 1.0 for 100-bp reads from the raw 
fluorescent images.

Reads mapping. We checked the insert size distribution of each library by 
Eland in the SolexaPipeline and used the distribution as the input insert 
size range parameter in a paired-end alignment. We first used SOAPaligner, 
(SOAP2)54 to align all short reads to the Nipponbare reference genome. The 
detailed parameters used are as follows:

“soap2.20 –p 4 –a 1.fq –b 2.fq –D IRGSP_chromosomes_build04.fa.index –o  
sample.soap -2 sample.single –u unmapped.fa –m 435*1 –x 501*1 –s 35 –l 24 –v 7”

(*1: the insert size was estimated by Eland and given to each library as input).
This process allowed trimming of the reads to map the reads back to 

the genome (-s 35). But, the actual mapping length of the reads was long 
(Supplementary Fig. 3), with 95% of the reads longer than 50 bp (originally 
100 bp). Although we allowed a maximum of 7 mismatches in 100-bp and  
3 mismatches in 45-bp reads mapping, the actual missing matches within a 
single read were less than 2 in 100-bp reads that mapped uniquely to one posi-
tion in the reference genome (Supplementary Fig. 17). We also simulated reads 
from the reference genome and estimated the mapping rate (Supplementary 
Table 12) by the same mapping process to prove the difficulty in mapping.

Identification of novel genes. We assembled the unmapped reads from each 
sample into contigs by SOAPdenovo55 (default parameters were used and only 
contigs were constructed, not scaffolds). When identifying novel sequences, we 
first assembled the unmapped reads separately in each accession, and contigs 
shorter than 2 kb were excluded. We then used the self-alignment approach 
to exclude the redundant sequences. In total we identified 5,795 contigs with a 
total length of 23.2 Mb. We blasted all these candidate “novel” contigs against 
the reference genome to identify homologs in the Nipponbare genome. We 
found that 1,403 (24%) contigs indeed have more or less similar homologous 
sequences in the Nipponbare genome with coverage >30% and identity  
>80%, indicating these contigs’ sequences were very possibly from diverged 
homologs in the reference genome, which caused mapping difficulty. The 
remaining 4,392 contigs are either real novel sequences in other accessions or 
located in nonassembled heterochromatin regions. The GC ratio of these 23.2 Mb  
sequences is 42.4%, which is comparable to the GC ratio of the genome 
(43.5%). We conducted de novo gene annotation with AUGUSTUS56 for the 
5,795 contigs. After annotation, we excluded the redundant genes that were 
assembled in different accessions. Only one copy of the genes with more than 
90% identity and 90% coverage by BLAT was retained. In total, we annotated 
2,031 possible novel genes de novo. Then, we used BLASTP to compare the 
candidate novel genes against the NCBI nr database; 1,552 (76%) of the genes 
have homologs in the nr database (more than 60% identity and 60% coverage). 
Of the 1,552 genes, 1,415 (92%) genes have homologs in plants. The other 137 
(9%) genes only had homologs in species other than plants, which might have 
been from contamination. We functionally annotated the 1,415 proteins by 
InterProScan15. The average gene length is substantially shorter than that of 
the whole genome (957 bp versus 2,300 bp), indicating that many of the anno-
tated genes are not intact. A total of 432 genes are located in the 1,403 contigs 
with homologs in the Nipponbare reference genome, indicating that they are 
possibly from diverged homologs in the Nipponbare genome, as pointed out 
by the reviewer. Other genes may either be from real novel sequences in other 
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For the 15 wild accessions that were sequenced at a lower depth (2–3×), we 
called SNPs for each of the 15 accessions using SOAPsnp35 and only retained 
SNP sites that were covered by reads in at least 6 out of the 15 wild accessions to 
get informative sites for population structure analyses. By imposing these SNPs 
onto our 6.5-M SNP set identified in the previous 50 accessions, we obtained 
3,668,781 SNPs that were further used in the phylogenetic tree, PCA analysis 
and population structure analyses for all 65 accessions.

Short indel detection. To detect insertions and deletions (shorter than 5 bp), 
another mapping process with a gap allowed (additional parameter of “-g 5” 
was used in SOAP2) was performed. Indels (1–5 bp) were called by SOAPindel 
pipeline (http://soap.genomics.org.cn/) as described in previous studies46,54. 
Indels were identified in each accession and then combined, based on the 
position and length of the insertions or deletions. We then randomly selected 
56 indels to be validated by Sanger sequencing (Supplementary Notes and 
Supplementary Table 15).

Structural variation (SV) and copy number variation (CNV). To detect struc-
tural variations longer than 10 bp, we applied a process similar to one described 
previously58 using assembly. To obtain a better assembly, we combined the 
sequences from each subgroup. Thus, for each subgroup, the sequences for assem-
bly were more than 50×. Then, the assembly into contigs and scaffolds was done 
using SOAPdenovo by default parameters and processes. The assembled scaf-
fold was mapped to the reference genome by BLAT59 with the –fastmap option.  
A scaffold was selected as the best aligned one if it covered the longest in length 
in the region and had the most contig supports. Then, the scaffolds and the ‘best 
alignment’ regions of the reference genome were extracted and aligned by LASTZ 
(http://www.bx.psu.edu/miller_lab/). For those unmapped scaffolds, we further 
tried to align them against the reference genome using BLASTn60. Finally, the 
structural variations were extracted using all those aligned regions.

For CNV detection, we used the mapping results by mrFAST, which outputs 
all the possible alignments when a read can be mapped to multiple positions 
in the genome. Using the mapping results, we calculated the mapping depth of 
each base of the reference genome in each accession. Then, the nearby bases 
without significant differences (the total depth distribution is assumed to be 
in a Poisson distribution) in mapping depth were combined into initial win-
dows. The mean depth of each window was then calculated and compared to 
other initial windows nearby. Initial windows without significant differences 
in depth were then combined into larger windows. This process of window 
merging was done one more time, and the edges and the copy number of each 
window were decided in this dynamic way. As we detected lost genes earlier, in 
detecting copy number variations, we only retained regions with more copies 
than the reference.

Construction of phylogeny. SNPs were used to calculate the genetic distances 
between different accessions. The p-distance between two individuals i and 
j is defined to be

D
L

dij ij
l

L
=

=
∑1 1

1

( )

where L is the length of regions where SNPs can be identified, and given 
the alleles at position l are A/C, D

L
dij ij

l

L
=

=
∑1 1

1

( ) was set to 0 if the genotypes of the  
two individuals were AA and AA; 0.5 if the genotypes of the two individuals 
were AC and AC; and 1 if the genotypes of the two individuals were AA and 
AC. Then, a neighbor-joining method was used to construct the phylogenetic 
tree on the basis of the distance matrix, calculated by the software PHYLIP 
3.68 (http://evolution.genetics.washington.edu/phylip.html), and MEGA4  
(ref. 34) was used to present the phylogenetic tree.

Population structure inference. We performed a PCA following the proce-
dure as reported32. The eigenvector decomposition of the transformed geno-
type data was performed using the R function eigen, and the significance of 
the eigenvectors was determined with a Tracey-Widom test, implemented in 
the program twstats, provided by the EIGENSOFT software32.

We further used the program FRAPPE, which is based on a maximum 
likelihood method35, to investigate the population structure.

We ran 10,000 iterations, and the number of clusters (K) was considered 
from 2 to 7.

Calculation of linkage disequilibrium (LD). To measure LD levels in different  
populations, we calculated the correlation coefficient (r2) of alleles after setting

-maxdistance 500 -dprime -minGeno 0.6 -minMAF 0.1 -hwcutoff 0.001

by the software Haploview39. Then, it was plotted with R scripts, which drew 
averaged r2 against pairwise marker distances.

Estimation of population parameters and detection of putative artificial 
selection genes. 

1. π and θw.
�π is defined as the average number of nucleotide differences per site 
between any two DNA sequences chosen randomly from the sample 
population26

p p p= =∑ ∑∑
==

x X x xi j ij
ij

i j ij
j

i

i

n

11

�where xi and xj are the respective frequencies of the ith and jth sequences, 
πij is the number of nucleotide differences per nucleotide site between the 
ith and jth sequences and n is the number of sequences in the sample. The 
summation is taken over all distinct pairs i,j, without repetition.
�θw is the estimation of the population mutation rate, based on the number 
of segregating sites61.

2. FST.
�FST is a measure of population differentiation, genetic distance, based on 
genetic polymorphism data62, which is defined as

FST
Between Within

Between
=

∏ − ∏
∏

�where ΠBetween and ΠWithin represent the average number of pairwise 
differences between two individuals sampled from different (ΠBetween) or 
the same (ΠWithin) population. We specifically analyzed the variations in 
resistant genes (R genes) (Supplementary Notes, Supplementary Table 16  
and Supplementary Fig. 23).

3. Ratios of nonsynonymous and synonymous polymorphic sites.
�To calculate the synonymous changes relative to nonsynonymous changes 
at the whole genome level, we defined ratios of nonsynonymous and syn-
onymous polymorphic sites as the sum of π for nonsynonymous sites rela-
tive to the sum of π for synonymous sites in one gene. Here we used only 
the representative transcript for each gene in the rice gene annotation 
(RAP-DB version 4). Genes with effective lengths (including the exon and 
intron) shorter than 1,000 bp were removed. If nonsynonymous π or syn-
onymous π in one population (Japonica, Indica, O. nivara, O. rufipogon)  
was 0, the gene was also removed from the gene list.

4. ROD values and detection of putative genes under selection.
�Selected regions in cultivars are expected to have a lower diversity com-
pared to the same regions in the wild species. To measure this, we defined 
the reduction of diversity by ROD as

ROD cul

wild
= −1

p
p

�where πcul and πwild are the values of π for the cultivated and wild varie-
ties, respectively, calculated in 10 kb or 100 kb nonoverlapping windows 
along the genome.
�By using 10 kb or 100 kb nonoverlapping windows along the genome, 
we calculated the ROD value for each window. The windows with a sig-
nificantly high ROD in the 2.5% or 0.25% right tail of the ROD empirical 
distribution are picked out as candidate selective sweep regions, and genes 
in these regions are identified as putative genes under selection. Usually, a 
10-kb region contains a single gene, but when it contains several genes, we 
took all of them as candidate artificially selected genes. If a gene crossed 
two windows, it was only counted once.

5. Analysis of the artificial selection genes.

http://soap.genomics.org.cn/
http://www.bx.psu.edu/miller_lab/
http://evolution.genetics.washington.edu/phylip.html
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The gene family information of the artificial selection genes was obtained 
from the RAP DB63. Then we used χ2 method to test the enrichment of artificial 
selection genes in some gene families. If the number of artificial selection genes 
in one gene family (nfamily_selected) was significantly more than the expected 
number inferred by considering the number of genes from that gene family 
(Nfamily_total) in the total gene set (Ntotal) and the total number of genes under 
selection (nselected), then the test of independence between categorizing by gene 
families and selection was performed using the contingency table below.

In this gene family Not in this gene family

Selected nfamily_selected nselected − nfamily_selected
Not selected Nfamily_total Ntotal − Nfamily_total

Then χ2 = Σ(Oi-Ei)2/Ei was used to calculate the χ2 value, where Oi is the ob-
served value of each cell (as shown in the above table), and Ei is the expected 
value of each cell calculated by the total number of each column and line. If 
the test shows significant dependence of whether the one gene is from this 
gene family with whether this gene is selected, the genes from this family are 
prone to be selected or not to be selected. And if the number of genes selected 
in this family is greater than the expectation, we determine this gene family 
as significantly enriched in selection. The P-values of the statistical test were 
shown in Supplementary Table 11.
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